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This paper addresses the control law design for synchronization of two different chaotic oscillators with mutually
Lipschitz nonlinearities. For analysis of the properties of two different nonlinearities, an advanced mutually Lipschitz
condition is proposed. This mutually Lipschitz condition is more general than the traditional Lipschitz condition. Unlike the
latter, it can be used for the design of a feedback controller for synchronization of chaotic oscillators of different dynamics.
It is shown that any two different Lipschitz nonlinearities always satisfy the mutually Lipschitz condition. Applying the
mutually Lipschitz condition, a quadratic Lyapunov function and uniformly ultimately bounded stability, easily designable
and implementable robust control strategies utilizing algebraic Riccati equation and linear matrix inequalities, are derived
for synchronization of two distinct chaotic oscillators. Furthermore, a novel adaptive control scheme for mutually Lipschitz
chaotic systems is established by addressing the issue of adaptive cancellation of unknown mismatch between the dynamics
of different chaotic systems. The proposed control technique is numerically tested for synchronization of two different
chaotic Chua’s circuits and for obtaining identical behavior between the modified Chua’s circuit and the Rössler system.
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1. Introduction
Synchronization of chaos, observed in naturally occur-

ring processes, has a significant impact on biological, chem-
ical, and physical systems, and an important role in applied
science fields, such as medicine and engineering.[1–11] Two or
more synchronous chaotic systems either arise naturally due to
strong coupling effects, or are intentionally brought about by
application of a control law. In the former case, a control law
is derived to investigate the properties of synchronous oscilla-
tors; in the latter, a control law formulation is required in order
to achieve chaos synchronization for different applications in
the areas of secure communication, aerospace technology, in-
formation processing, image processing, optics, and medical
therapies.[10–23]

Numerous adaptive, evolutionary, intelligent, optimal and
robust control methodologies based on neural networks, state
feedback and fuzzy logic for synchronization of identical
chaotic systems and attainment of asymptotic (or exponential)
stability, finite-time stability, robustness, disturbance rejec-
tion, desired steady-state performance, improved transient re-
sponse, and noise handling have been investigated.[9–11,24–30]

Control strategies have been applied to cope with various
circumstances, such as input saturation, slope bounds, time

delays, and unknown dynamics, and also to deal with dif-
ferent dynamics including Lure oscillators, Rössler systems,
Chua’s circuits, FitzHugh–Nagumo networks, and Lipschitz
structures.[10,30–34] However, synthesis of control schemes for
synchronization of different chaotic identities are lacking in
the literature; and in fact, this problem requires significant
research attention owing to various applications of the chaos
synchronization phenomenon.

Among the research work on chaos synchronization of
unlike dynamical systems, a few exceptional examples re-
quire specific mention. In Refs. [35]– [37], adaptive con-
trol schemes were developed, and adaptation laws were for-
mulated, to cope with the problem of the synchronization
of two different chaotic oscillators for unknown parameters.
Sliding-mode control strategies for synchronization of dis-
tinct chaotic systems under disturbances, slope-restricted in-
put nonlinearity, and different types of uncertainties have been
addressed.[38–40] Recently, a control methodology was devel-
oped for chaos synchronization of non-identical fractional-
order systems with different numbers of states.[41] An adaptive
synchronization approach entailing a unified chaotic oscillator
and a cellular network for development of an asymmetric im-
age cryptosystem utilizing Lyapunov stability theory is intro-
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duced in a recent work.[42] However, these control strategies
are sufficiently computationally complex for real-time imple-
mentation. Moreover, further research is needed to classify
various types of chaotic oscillators according to their dynam-
ical characteristics and to design synchronization controllers
derived from those properties.

In this paper, the problem of the synthesis of static
and adaptive state feedback controllers for synchronization
of two different chaotic systems under bounded disturbance
is addressed. The dynamics of the chaotic systems are as-
sumed to satisfy the mutually Lipschitz condition provided
herein, which is more general than the traditional Lipschitz
condition.[43–45] The conventional Lipschitz condition, used
often to derive control laws for synchronization of identical
chaotic oscillators,[33,46,47] is inapplicable to different chaotic
oscillators. The proposed mutually Lipschitz condition offers
the advantage of addressing two different nonlinear functions.
The properties of individual nonlinearities satisfying the mu-
tually Lipschitz condition are investigated in order to examine
its parameters. The mutually Lipschitz condition is applied
along with the Lyapunov stability and uniformly ultimately
bounded stability theories to derive the simplest state feedback
control law for chaos synchronization. An algebraic Riccati
equation based control methodology is formulated, and fur-
ther, a less conservative robust control strategy utilizing linear
matrix inequalities (LMIs) is established for chaos synchro-
nization against disturbances. The proposed control strategy,
owing to utilization of the mutually Lipschitz condition, is
uncomplicated in design and straightforward in implementa-
tion, as compared with the conventional schemes for synchro-
nization of unlike oscillators. Additionally, a novel adaptive
control strategy is proposed for cancellation of mismatch be-
tween chaotic-system nonlinearities and avoidance of a large
controller gain. It should be emphasized that a new adap-
tive control scheme can be applied for chaos synchronization
without any requirement for dynamic inversion of the input
matrix of the slave system. Even if the complete dynamics
of the chaotic systems are unknown or uncertain, the resul-
tant control schemes can be readily applied for chaos synchro-
nization by utilizing the knowledge of the parameters of the
mutually Lipschitz condition. To the best of our knowledge,
the proposed mutually Lipschitz condition is provided for the
first time, and furthermore this condition is analyzed and ap-
plied for robust and adaptive synchronization control of dif-
ferent chaotic systems. Simulation results for the proposed
control methodology are applied both to the synchronization
of two different Chua’s circuits and to the synchronization of
the Rössler system with the modified Chua’s circuit.

This paper is organized as follows. Section 2 describes
the chaotic systems. Section 3 addresses the mutually Lip-
schitz condition, and Section 4 derives the proposed control

strategies for chaos synchronization. Section 5 presents and
analyzes the numerical simulation results. Section 6 draws
conclusions. Standard notation is used in this paper. For
a vector 𝑧, ‖z‖ denotes the Euclidean norm. For entries yi

(i = 1,2, ...,n), diag(y1,y2, ...,yn) represents a diagonal ma-
trix. A positive-definite (or a negative-definite) matrix 𝑄 is
represented by 𝑄 > 0 (or 𝑄 < 0). The transpose of a matrix
𝑄 is denoted by 𝑄T.

2. System description

Consider a chaotic system, deemed as the master system
and described by

dxm

dt
=𝐴𝑥m +𝑓(t,𝑥m)+𝑑m, 𝑥m(0) = 𝑥m0, (1)

where 𝑥m ∈𝑅n and 𝑑m ∈𝑅n denote the state of the system
and the input disturbance to the oscillator, respectively, the
vector 𝑓(t,𝑥m) ∈𝑅n represents a time-varying function, and
𝑥m(0) = 𝑥m0 is the initial condition of the chaotic oscillator.
The slave chaotic system is given by

dxs

dt
=𝐴𝑥s +𝑔(t,𝑥s)+𝐵𝑢+𝑑s, 𝑥s(0) = 𝑥s0, (2)

where 𝑥s ∈𝑅n, 𝑢 ∈𝑅m, and 𝑑s ∈𝑅n denote the state of the
system, the control input to the oscillator, and the disturbance
effects, respectively. Clearly, the functions 𝑓(t,𝑥m) ∈𝑅n and
𝑔(t,𝑥s) ∈𝑅n, capable of representing both the linear and the
nonlinear components, are taken to be different for the two os-
cillators. The linear parts in Eqs. (1) and (2) are represented
by the same matrix 𝐴 ∈𝑅n×n. The variations in the nonlinear
parts for the master and the slave oscillators can be included
in the functions 𝑓(t,𝑥m) and 𝑔(t,𝑥s), respectively. The input
matrix 𝐵 ∈𝑅n×m has constant entries. Defining 𝑒=𝑥m−𝑥s,
the synchronization error dynamics can be written as

de
dt

=𝐴𝑒+𝑓(t,𝑥m)−𝑔(t,𝑥s)−𝐵𝑢+𝑑m−𝑑s,

𝑒(0) = 𝑥m0−𝑥s0. (3)

Assumption 1 Disturbances ‖𝑑m−𝑑s‖ ≤ 𝑑max and 𝑑s

are bounded such that ‖𝑑m−𝑑s‖2 ≤ 𝑑max. Note that if
‖𝑑m−𝑑s‖ ≤ 𝑑max and 𝑑s are bounded in the Euclidean norm
sense, the relation ‖𝑑m−𝑑s‖2 ≤ 𝑑max can be easily verified.

The purpose of the present study is to develop static feed-
back and adaptive control strategies for synchronization of two
different chaotic oscillators (1) and (2) under bounded distur-
bances. For this reason, in the next section we define, for
two nonlinearities 𝑓(t,𝑥m) and 𝑔(t,𝑥s), the mutually Lips-
chitz condition that can be used in the derivation of a suitable
control law.
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3. Mutually Lipschitz nonlinearities
First, two mutually Lipschitz nonlinearities are defined as

follows.
Definition 1 Nonlinear functions 𝑓(t,𝑥) ∈ 𝑅n and

𝑔(t, �̄�) ∈ 𝑅n for all 𝑥, �̄� ∈ 𝑅p are said to be (globally) mu-
tually Lipschitz, if

‖𝑓(t,𝑥)−𝑔(t, �̄�)‖2 ≤ l2
max ‖𝑥− �̄�‖2 +φmax (4)

for scalars lmax ≥ 0 and φmax ≥ 0.
Definition 2 Nonlinear functions 𝑓(t,𝑥) ∈ 𝑅n and

𝑔(t, �̄�)∈𝑅n are said to be locally mutually Lipschitz, if condi-
tion (4) is satisfied for all 𝑥, �̄�∈𝛺 ⊂𝑅p with scalars lmax ≥ 0
and φmax ≥ 0.

Condition (4) is called the mutually Lipschitz condition.
The dimensions of 𝑥 and 𝑓(t,𝑥) are taken to be different for
the general case; however, usually, n = p can be assumed as
seen in the present case. It can be verified that condition (4) is
more general than the traditional Lipschitz condition. Mutu-
ally Lipschitz condition (4) reduces to the Lipschitz condition
with Lipschitz constant lmax, if 𝑓(t,𝑥) = 𝑔(t,𝑥) is chosen for
φmax = 0 and lmax 6= 0.

After defining the mutually Lipschitz nonlinearities, a
task essential to identification of the two mutually Lipschitz
functions, 𝑓(t,𝑥) and 𝑔(t, �̄�), is to determine the characteris-
tics of the nonlinearities. Another major concern is to find a
method for computing parameters lmax and φmax. These prob-
lems are investigated in the remainder of this section.

Proposition 1 Suppose that nonlinear functions 𝑓(t,𝑥)∈
𝑅n and 𝑔(t, �̄�) ∈ 𝑅n for all 𝑥, �̄� ∈ 𝑅p belong to Lipschitz
nonlinearities with Lipschitz constants lf and lg, respectively.
Then the inequalities

‖𝑓(t,𝑥)−𝑔(t, �̄�)‖2

≤ (1+ ε) l2
f ‖𝑥− �̄�‖2 +

(
1+ ε

−1)
δ1, (5)

‖𝑓(t,𝑥)−𝑔(t, �̄�)‖2

≤ (1+ ε) l2
g ‖𝑥− �̄�‖2 +

(
1+ ε

−1)
δ2, (6)

are satisfied for any positive scalar ε , where δ1 =

‖𝑓(t, �̄�)−𝑔(t, �̄�)‖2 and δ2 = ‖𝑓(t,𝑥)−𝑔(t,𝑥)‖2.
Proof The left side of Eq. (5) can be written as

‖𝑓(t,𝑥)−𝑔(t, �̄�)‖2

= ‖𝑓(t,𝑥)−𝑓(t, �̄�)‖2

+ 2(𝑓(t, �̄�)−𝑔(t, �̄�))T (𝑓(t,𝑥)−𝑓(t, �̄�))

+ ‖𝑓(t, �̄�)−𝑔(t, �̄�)‖2 . (7)

It can be easily verified that

2(𝑓(t, �̄�)−𝑔(t, �̄�))T (𝑓(t,𝑥)−𝑓(t, �̄�))

≤ ε ‖𝑓(t,𝑥)−𝑓(t, �̄�)‖2 + ε
−1 ‖𝑓(t, �̄�)−𝑔(t, �̄�)‖2 . (8)

The traditional Lipschitz condition reveals

‖𝑓(t,𝑥)−𝑓(t, �̄�)‖ ≤ lf ‖𝑥− �̄�‖ , (9)

‖𝑔(t,𝑥)−𝑔(t, �̄�)‖ ≤ lg ‖𝑥− �̄�‖ . (10)

Incorporating Eqs. (8) and (9) into Eq. (7) implies inequal-
ity (5). Inequality (6) can be obtained in the same way.

Proposition 2 Two nonlinear functions 𝑓(t,𝑥)∈𝑅n and
𝑔(t, �̄�) ∈𝑅n for all 𝑥, �̄� ∈𝑅p belonging to Lipschitz nonlin-
earities are mutually Lipschitz.

Proof Note that the Euclidean norm of any Lipschitz
function, say 𝑓(t,𝑥) or 𝑔(t,𝑥), is bounded for all 𝑥 ∈ 𝑅p;
therefore, δ1 and δ2 remain bounded. Inequality (5) implies
mutually Lipschitz condition (4) for lmax = lf

√
(1+ ε) and

φmax =
(
1+ ε−1

)
max(δ1). Mutually Lipschitz condition (4)

can also be obtained from inequality (6) for lmax = lg
√
(1+ ε)

and φmax =
(
1+ ε−1

)
max(δ2).

Remark 1 There are two options, inequalities (5)-
and (6)-dependent, for selecting parameters lmax and φmax.
The parameter lmax, like the Lipschitz constant, is required
to be small in a control law design. Therefore, lmax =

min
(
lf
√

1+2ε, lg
√

1+2ε
)

can be a good choice, and the cor-
responding value of φmax can be selected. Parameter φmax can
be chosen for a bounded region of 𝑥 (or �̄�), as it can be dif-
ficult to determine for the entire space. Further, selection of
φmax for a local bounded region is quite reasonable in the case
of chaos synchronization, because the states of (the master
and the slave) chaotic systems remain in bounded regions and
these regions can be estimated easily via numerical simula-
tions.

Remark 2 It has been validated that the two different
Lipschitz nonlinearities are always mutually Lipschitz. Simi-
lar results provided in Propositions 1 and 2 can be derived for
the locally mutually Lipschitz nonlinearities, if 𝑥, �̄� ∈𝛺. In
that case, inequalities (5) and (6) are satisfied for the locally
Lipschitz nonlinearities 𝑓(t,𝑥) and 𝑔(t,𝑥) satisfying Eqs. (9)
and (10) in a local region 𝑥, �̄� ∈𝛺 ⊂𝑅p. Consequently, the
control strategies developed for synchronization of the glob-
ally mutually Lipschitz nonlinear systems can be readily ap-
plied to the locally mutually Lipschitz nonlinear systems.

Now, to devise control strategies for synchronization of
chaotic systems (1) and (2), the following assumption is made.

Assumption 2 Nonlinear functions 𝑓(t,𝑥) and 𝑔(t, �̄�)

are mutually Lipschitz.

How the knowledge of the proposed mutually Lipschitz
condition (4) can be incorporated to synchronize two different
systems (1) and (2) will be explored in the following section.
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4. Feedback control
The structure of the proposed static state feedback con-

troller is chosen as

𝑢=𝐾𝑒, (11)

where 𝐾 ∈𝑅m×n is the controller gain to be determined. In-
corporating Eq. (11) into Eq. (3) yields

de
dt

= (𝐴−𝐵𝐾)𝑒+𝑓(t,𝑥m)−𝑔(t,𝑥s)+𝑑m−𝑑s,

𝑒(0) = 𝑥m0−𝑥s0. (12)

Now a matrix inequality based approach to the resolution of
the synchronization dilemma is provided for mutually Lips-
chitz nonlinear systems (1) and (2) in the form of the following
theorem.

Theorem 1 Consider mutually Lipschitz nonlinear sys-
tems (1) and (2) satisfying Assumptions 1 and 2, and suppose
that there exist a positive-definite symmetric matrix 𝑃 ∈𝑅n×n

and a positive scalar λ such that algebraic Riccati inequality

𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃

− 𝑃𝐵𝐾+2𝑃 2 + l2
max𝐼+λ𝐼 < 0 (13)

is satisfied. Then the control law (11) ensures uniformly ulti-
mately bounded synchronization error 𝑒 = 𝑥m−𝑥s in region
‖𝑒‖2 ≤ (φmax +dmax)/λ . Furthermore, the error can be mini-
mized by selecting a large value of λ .

Proof Consider a quadratic Lyapunov function

𝑉 (t,𝑒) = 𝑒T𝑃𝑒. (14)

The time derivative (14) along (11) is

�̇� (t,𝑒) = 𝑒T (𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃 −𝑃𝐵𝐾
)
𝑒

+ (𝑓(t,𝑥m)−𝑔(t,𝑥s))
T𝑃𝑒

+ 𝑒T𝑃 (𝑓(t,𝑥m)−𝑔(t,𝑥s))

+ (𝑑m−𝑑s)
T𝑃𝑒+𝑒T𝑃 (𝑑m−𝑑s) . (15)

Incorporating the inequalities

2(𝑓(t,𝑥m)−𝑔(t,𝑥s))
T𝑃𝑒

≤ (𝑓(t,𝑥m)−𝑔(t,𝑥s))
T (𝑓(t,𝑥m)−𝑔(t,𝑥s))

+ 𝑒T𝑃𝑃𝑒, (16)

2(𝑑m−𝑑s)
T𝑃𝑒

≤ (𝑑m−𝑑s)
T (𝑑m−𝑑s)+𝑒T𝑃𝑃𝑒, (17)

into Eq. (15) leads to

�̇� (t,𝑒) ≤ 𝑒T (𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃 −𝑃𝐵𝐾+2𝑃 2)𝑒
+ (𝑓(t,𝑥m)−𝑔(t,𝑥s))

T (𝑓(t,𝑥m)−𝑔(t,𝑥s))

+ (𝑑m−𝑑s)
T (𝑑m−𝑑s) . (18)

Applying Assumptions 1 and 2 results in

�̇� (t,𝑒)

≤ 𝑒T (𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃 −𝑃𝐵𝐾+2𝑃 2 + l2
maxI

)
𝑒

+ φmax +dmax. (19)

Inequality (13) reveals 𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃 −𝑃𝐵𝐾 +

2𝑃 2 + l2
maxI <−λ𝐼 , which along with (19) implies

�̇� (t,𝑒)<−λ ‖𝑒‖2 +φmax +dmax. (20)

Based on Eq. (20), �̇� (t,𝑒) < 0, if ‖𝑒‖2 > (φmax +dmax)/λ .
Hence, the error converges to a sphere ‖𝑒‖2 ≤
(φmax +dmax)/λ , the size of which can be minimized by max-
imizing λ .

There are two issues pertinent to the approach developed
in Theorem 1. First, selection of matrices 𝑃 and 𝐾 is not an
easy task; second, this might not offer optimization of param-
eter λ to achieve maximum rejection of unwanted disturbance
signals. Therefore, an LMI-based approach addressing these
issues is presented in the following theorem.

Theorem 2 Consider mutually Lipschitz nonlinear sys-
tems (1) and (2) satisfying Assumptions 1 and 2, and sup-
pose that there exist a symmetric matrix 𝑄 ∈ 𝑅n×n, a ma-
trix 𝑀 ∈𝑅m×n, and a scalar µ . By solving the optimization
min µ ,

Q > 0, µ > µo ≥ 0, (21)𝑄𝐴T +𝐴𝑄−𝑀T𝐵T−𝐵𝑀 +2𝐼 𝑄lmax Q
∗ −𝐼 0
∗ ∗ −µ𝐼

< 0,

(22)

the parameter 𝐾 of control law (11) can be obtained as 𝐾 =

𝑀𝑄−1. Furthermore, control law 𝑢=𝐾𝑒 ensures uniformly
ultimately bounded synchronization error 𝑒 = 𝑥m−𝑥s in re-
gion ‖𝑒‖2 ≤ µ (φmax +dmax) .

Proof Pre- and post-multiplication of algebraic Riccati
inequality (13) by 𝑃−1 and furthermore substitution of 𝑃−1 =

𝑄, λ−1 = µ , and 𝑀 =𝐾𝑄, obtains

𝑄𝐴T +𝐴𝑄−𝑀T𝐵T−𝐵𝑀

+ 2𝐼+ l2
max𝑄

2 +µ
−1𝑄2 < 0. (23)

Applying the Schur complement yields LMI (22). Region
‖𝑒‖2≤ (φmax +dmax)/λ , in which the error remains uniformly
ultimately bounded, is equivalent to ‖𝑒‖2 ≤ µ (φmax +dmax)

by application of λ−1 = µ , and maxλ is changed to min µ .
Parameter µo is then introduced to set a lower bound on µ .
This completes the proof of Theorem 2.
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Remark 3 Significantly, by application of the proposed
mutually Lipschitz condition, the simplest state feedback con-
trol law can be derived as in Theorems 1 and 2 for synchro-
nization of two different chaotic systems. Furthermore, ro-
bustness of the resultant control strategy against disturbances
and φmax can be achieved by maximizing λ (or minimizing µ).
It is also significant that a control law can be readily designed
even if nonlinear functions 𝑓(t,𝑥) and 𝑔(t,𝑥) are unknown
because knowledge of lmax is sufficient for that purpose.

Remark 4 The traditional control strategies for synchro-
nization of different chaotic systems are,[35–42] to a consid-
erable extent, computationally complex in their implementa-
tion. Contrastingly, design of the proposed control strategy, by
virtue of the mutually Lipschitz condition and the uncompli-
cated state feedback control law, is straightforward for optimal
results via LMIs, as well as intuitively implementable.

Remark 5 Motivated by the Lipschitz-like
condition,[48–50] a more general form of (4), called the mu-
tually Lipschitz-like condition, is

‖𝑓(t,𝑥)−𝑔(t, �̄�)‖2 ≤ ‖𝐿max(𝑥− �̄�)‖2 +φmax, (24)

where 𝐿max ∈ 𝑅n×n. Condition (24) reduces to (4) for
𝐿T

max𝐿max = l2
max𝐼 . It can be validated that two nonlinearities

𝑓(t,𝑥) and 𝑔(t,𝑥) satisfying (24) always assure (4), because
a suitable value of lmax can be chosen such that 𝐿T

max𝐿max ≤
l2
max𝐼 . In designing synchronization controller (11) for sys-

tems (1) and (2), parameters l2
max and lmax in Theorems 1 and

2 can be replaced by 𝐿T
max𝐿max and 𝐿T

max (or 𝐿max), respec-
tively. For instance, LMI (22) can be replaced by𝑄𝐴T +𝐴𝑄−𝑀T𝐵T−𝐵𝑀 +2𝐼 𝑄𝐿T

max 𝑄
∗ −𝐼 0
∗ ∗ −µ𝐼

< 0

(25)

in Theorem 2 in designing a feedback controller. If matrix
𝐿max is known, LMI (25) can be less conservative to design
a feasible synchronization controller for chaotic oscillators (1)
and (2).

The approach developed in Theorems 1 and 2 can be used
effectively for synchronization of chaotic systems with differ-
ent, low-mismatch nonlinearities 𝑓(t,𝑥m) and 𝑔(t,𝑥s). How-
ever, if δ1 and δ2 are higher, φmax will be larger, resulting in a
highgain controller. Such a highgain controller can be conser-
vative in the presence of actuator saturation and measurement
noise. To deal with large differences in chaotic system dynam-
ics, we develop an adaptive control strategy based on adap-
tive cancellation of unknown terms that can be implemented
straightforwardly. The proposed adaptive controller is given
by

𝑢=𝐾𝑒+𝛷(t), (26)

where Φ ∈𝑅m is an adaptive parameter for compensation of
disturbance and mismatch between nonlinearities. Incorporat-
ing Eqs. (11) and (3) yields

de
dt

= (𝐴−𝐵𝐾)𝑒+𝑓(t,𝑥m)−𝑔(t,𝑥s)−𝐵𝛷+𝑑m−𝑑s,

𝑒(0) = 𝑥m0−𝑥s0. (27)

Theorem 3 Consider mutually Lipschitz nonlinear sys-
tems (1) and (2) satisfying Assumptions 1 and 2, and sup-
pose that there exist a symmetric matrix 𝑄 ∈𝑅n×n, a matrix
𝑀 ∈ 𝑅m×n, and a scalar µ , such that LMIs 𝑄 > 0, µ > 0,
and inequality (22) are satisfied. Then there exists an adaptive
controller of the form (26) with adaptation law

�̇�=𝐵T𝑃𝑒− (φmax +dmax)𝛷

‖𝛷‖2 +σ
, (28)

where σ is a positive infinitesimally small scalar employed for
singularity avoidance, such that synchronization error 𝑒 con-
verges to zero. Parameter 𝐾 of control law (11) can then be
obtained as 𝐾 =𝑀𝑄−1.

Proof Consider a Lyapunov function given by

𝑉 (t,𝑒) = 𝑒T𝑃𝑒+𝛷T𝛷. (29)

Time derivative (29) along (27) is given by

�̇� (t,𝑒) = 𝑒T (𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃 −𝑃𝐵𝐾
)
𝑒

+ (𝑓(t,𝑥m)−𝑔(t,𝑥s))
T𝑃𝑒

+ 𝑒T𝑃 (𝑓(t,𝑥m)−𝑔(t,𝑥s))

− 𝑒T𝑃𝐵𝛷−𝛷T𝐵T𝑃𝑒+(𝑑m−𝑑s)
T𝑃𝑒

+ 𝑒T𝑃 (𝑑m−𝑑s)+𝛷T�̇�+ �̇�T𝛷. (30)

Applying Eqs. (16) and (17), we obtain

�̇� (t,𝑒) ≤ 𝑒T (𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃 −𝑃𝐵𝐾+2𝑃 2)𝑒
+ (𝑓(t,𝑥m)−𝑔(t,𝑥s))

T (𝑓(t,𝑥m)−𝑔(t,𝑥s))

− 𝑒T𝑃𝐵𝛷−𝛷T𝐵T𝑃𝑒+(𝑑m−𝑑s)
T (𝑑m−𝑑s)

+𝛷T�̇�+ �̇�T𝛷. (31)

Assumptions 1 and 2 reveal that

�̇� (t,𝑒)

≤ 𝑒T (𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃 −𝑃𝐵𝐾+2𝑃 2 + l2
max𝐼

)
𝑒

+ φmax +dmax−𝑒T𝑃𝐵𝛷−𝛷T𝐵T𝑃𝑒

+𝛷T�̇�+ �̇�T𝛷. (32)

By exploiting the proposed adaptation law, we obtain

�̇� (t,𝑒)

≤ 𝑒T (𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃 −𝑃𝐵𝐾+2𝑃 2 + l2
max𝐼

)
𝑒

+ φmax +dmax−
(φmax +dmax)𝛷

T𝛷

‖𝛷‖2 +σ
. (33)
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The fact that positive scalar σ is infinitesimally small implies

�̇� (t,𝑒) ≤ 𝑒T(𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃 −𝑃𝐵𝐾

+ 2𝑃 2 + l2
maxI)𝑒. (34)

For convergence of synchronization error 𝑒 to the origin, we
require that inequality (13) should be satisfied, which further
reveals LMI (22) after congruence transform, 𝑄 = 𝑃−1, as
well as the Schur complement. This completes the proof of
Theorem 3.

Remark 6 Practically, parameter σ can be selected as a
small positive scalar rather than an infinitesimally small num-
ber. In that case, inequality (34) entails

�̇� (t,𝑒) ≤ 𝑒T(𝐴T𝑃 +𝑃𝐴−𝐾T𝐵T𝑃 −𝑃𝐵𝐾

+ 2𝑃 2 + l2
maxI)𝑒+

(φmax +dmax)σ

‖𝛷‖2 +σ
, (35)

which along with (13) implies

�̇� (t,𝑒)<−λ ‖𝑒‖2 +
(φmax +dmax)σ

‖𝛷‖2 +σ
. (36)

Hence the synchronization error remains uniformly ultimately
bounded in set

‖𝑒‖2 ≤ (φmax +dmax)σ

λ

(
‖𝛷‖2 +σ

) . (37)

Note that (φmax +dmax)σ/
(
‖𝛷‖2 +σ

)
≤ φmax+dmax. There-

fore, the size of the sphere in which the synchronization error
will converge is smaller than in the case of the robust control
strategy provided in Theorem 2. Thus, a large gain controller,
at the cost of additional computation for the adaptive term,
might not be required.

Remark 7 The adaptive control strategy proposed in
Theorem 3 is advantageous, because it ensures adaptive can-
cellation of unknown disturbances and mismatch between
nonlinearities, specifically by utilizing their bounds. It should
be noted that adaptive parameter 𝛷, unlike the traditional
adaptive approaches (e.g., Refs. [35] and [36]), has been used
to cancel unknown terms without requiring invertible input
matrix 𝐵.

5. Simulation results
Two simulation examples of controlled synchronization

of different chaotic oscillators are provided below.

5.1. Synchronization of two different Chua’s circuits

Consider the following two uncertain and different
chaotic Chua’s circuits:[33,49]

𝐴=

−2.548 9.1 0
1 −1 1
0 14.2 0

 ,

𝑓(t,𝑥m) =

 α1 (|xm +α2|+ |xm−α3|)
0
0

 , (38)

𝑔(t,𝑥s) =

 β1 (|xs +β2|+ |xs−β3|)
0
0

 ,
dm =

 0.8sin70t
0.15sin90t
1.2sin130t

 , (39)

𝑑s =−

 0.7sin75t
0.12sin100t
1.1sin138t

 . (40)

Clearly, functions 𝑓(t,𝑥m) and 𝑔(t,𝑥s) are different, and their
parameters αi and βi (i = 1,2,3) are assumed to be unknown
and bounded, such that α1,β1 ∈

[
0 2

]
and α2,α3,β2,β3 ∈[

0 1.2
]
. The feedback gain matrix is determined as

𝐾 =

 53.04 8.3 −10.35
2.07 43 2.38

13.78 −15.58 44

 , (41)

by selecting µo = 0.01 and Lmax = diag(3,0,0), and employ-
ing the optimization in Theorem 2. The proposed controller
is applied to synchronize the Chua’s circuits with parameters
α1 = 1.9286, β1 = 1.8482, α2 = 1, β2 = 1.1, α3 = 1.1, and
β3 = 1. The synchronization error plots shown in Fig. 1 vali-
date the convergence of the synchronization errors to a small
region near the origin. Therefore, the proposed methodology
outlined in Theorem 1 can be considered to be applicable to
different chaotic systems with low mismatch between their dy-
namics.

5.2. Synchronization of Rössler system and modified
Chua’s circuit

Consider a modified Chua’s circuit as the master system
and a Rössler system as the slave system with dynamics,[35]

given by

𝑓(t,𝑥m) =

 10
(

xm2−
2x3

m1−xm1
7

)
xm1− xm2 + xm3
− 100

7 xm2

 ,
𝑔(t,𝑥s) =

 −xs2− xs3
xs1 +0.2xs2

0.2+ xs3 (xs1 +5.7)

 , (42)

and 𝐴= 0. The Lipschitz constant lf is calculated numerically
by determining the supremum of the maximum eigenvalues of
(∂𝑓(t,𝑥)/∂𝑥)T (∂𝑓(t,𝑥)/∂𝑥) for x ∈

[
−2 2

]
. By selecting

ε = 0.1, the mutually Lipschitz constant is determined to be
lmax = 23.72. By solving the LMIs in Theorem 2, the feed-
back gain matrix K = diag(77.61,77.61,77.61) is calculated.
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Fig. 1. (color online) Synchronization error plots for two different
Chua’s circuits in Example 1: (a) e1; (b) e2; and (c) e3.

Figures 2 and 3 show the chaotic behaviors of the master
and slave systems without a controller and with the proposed
controller, respectively. Figure 2 indicates that in the absence
of a controller, the master and the slave systems have their
own distinct behaviors. By contrast, figure 3 indicates that
with the proposed control methodology, the phase portrait
of the Rössler system follows the modified Chua’s circuit.
Figure 4 provides the relevant synchronization error plots.
For time t < 200 s, the control signal u is selected as zero,
and the synchronization errors exhibit an oscillatory behav-
ior. By application of the proposed controller for t ≥ 200 s,
the synchronization errors converge to a bounded region. In
a test of the proposed adaptive control strategy’s obtainment
of a lowgain controller for lmax = 2, the controller gain is

-1.0 -0.5

-0.2
-0.4 0

0

0.5

0.4
0.2

1.0 1.5

2

1

0

-1

-2

xm1

xm2

x
m
3

(a)

-15
-15 -10

-10
-5

-5

0

0

5

5

10

10

15

40

30

20

10

0

xs1

xs2

x
s3

(b)

Fig. 2. (color online) Phase portraits of the chaotic systems in Example
2 without application of a controller: (a) phase portrait of the modified
Chua’s circuit; (b) phase portrait of the Rössler system.
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Fig. 3. (color online) Phase portraits of the chaotic systems in Example
2 by application of the proposed control law: (a) phase portrait of the
modified Chua’s circuit; (b) phase portrait of the RÖssler system.
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Fig. 4. (color online) Synchronization error plots for the Chua’s circuit and the Rössler system in Example 2 using the proposed static state feedback
controller: (a) e1; (b) e2; and (c) e3.

𝐾 = diag(18.96,18.96,18.96), which is about four times
lower than the robust controller gain. Figure 5 plots the re-
sults of the proposed adaptive control strategy for σ = 0.05

and t = 200 s. It is noteworthy that the performance of the
synchronization error convergence to a bounded region is sim-
ilar to that in the case of the non-adaptive controller.
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Fig. 5. (color online) Synchronization error plots for the Chua’s circuit and the Rössler system in Example 2 using the proposed adaptive feedback control
strategy: (a) e1; (b) e2; and (c) e3.

6. Conclusions
This paper addresses uncomplicated static state feedback

and adaptive dynamic controller synthesis methodologies for
synchronization of different chaotic oscillators containing mu-
tually Lipschitz nonlinearities. Algebraic Riccati-inequality-
based and LMI-based formulations are applied to the computa-
tion of the proposed controller gain matrix for synchronization
of mutually Lipschitz nonlinear systems. The proposed design
conditions, developed by using a quadratic Lyapunov func-
tion, the mutually Lipschitz condition, and the uniformly ul-
timately bounded stability theory, offer robustness against dis-
turbance and dynamical perturbations. For synchronization of
chaotic systems and cancellation of the nonlinearities arising
from mismatch between their dynamics, an adaptive scheme is
investigated. The entailed control schemes proposed, uncom-
plicated in design as well as in implementation, can be applied
for synchronization of different chaotic oscillators of unknown
dynamics. Two simulation examples entailing synchronization
of some of the well-known chaotic oscillators are provided as
a demonstration of the effectiveness of the approach.
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